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Secondary systems may have to endure severe vibration amplitudes under the influence
of the primary structures on which they are mounted. A series of numerical case studies
are presented in this paper to investigate the effectiveness of a tuned vibration absorber
with an impact damper, to attenuate the excessive vibration amplitudes of light secondary
systems. In addition, experimental measurements are reported for some selective cases and
comparisons are made with numerical predictions. This suggested configuration seems
suited ideally as an add-on enhancer for existing conventional absorbers. Results are
presented for random white noise excitation.
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1. INTRODUCTION

The term ‘‘secondary system’’ is used generically for light structures which are under some
influence of larger primary structures. Therefore, the response of a light secondary
structure is an indirect one through the dynamic response of the primary structure to an
external disturbance. Flexibly mounted machinery, transport of delicate cargo or the
piping system in buildings may be envisaged as examples of secondary systems. Prediction
and control of the excessive dynamic response of secondary systems have attracted
attention in the literature [1–5]. A new approach of combining rather conventional two
passive controllers will be investigated in this study.

Tuned vibration absorbers have been used effectively to control excessive vibrations of
resonant systems [5, 6]. A tuned absorber is an auxiliary oscillator added to the primary
system to be controlled. The purpose here is to interact strongly with the primary structure
and to absorb the energy input from the external disturbance. Control is accomplished by
tuning the parameters of the auxiliary oscillator such that an opposite force to the external
disturbance is generated by intentionally resonating the absorber. Control may be very
effective in restraining vibration amplitudes at the tuning frequency. However, effectiveness
of a conventional tuned absorber deteriorates rapidly as the frequency of oscillations
differs from this critical tuning frequency.

Many practical applications expose dynamic systems to wide band excitations, rather
than single frequency excitations. Naturally, a passive conventional tuned absorber is
inadequate for such cases. Some other means are required to improve the performance of
the conventional tuned absorber. Active interference to maintain the resonance condition
for the auxiliary absorber system promises to be effective for varying frequencies [7].
However, the approach taken in this study is to attempt to improve the performance by
passive means only. Passive systems have the unquestionable advantage of simplicity and
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robustness, provided that they are effective. It has been demonstrated that the effectiveness
of a passive tuned absorber could be enhanced significantly if another passive vibration
controller, an impact damper, is used to complement the tuned absorber [8, 9].

An impact damper is a loose rigid mass placed in a container which is secured to a
resonant system to be controlled. The dimensions of the container are chosen such that
there is an intentional clearance around the impact damper to allow intermittent collisions.
Each collision dissipates some energy and imposes an exchange of momentum. As a result
of this exchange of momentum, the smaller impact damper reserves its direction of motion.
On the other hand, the larger primary mass only slows down due to the momentum it lost
to the damper. Control is the consequence of this slowing of the primary mass, leading
to a smaller excursion amplitude. An impact damper’s effectiveness largely depends upon
the proper choice of the clearance. Reference [10] outlines the general approach in
designing an impact damper, presents information in the form of design charts and lists
relevant references.

An impact damper will be used in this study to enhance the vibration control ability
of a tuned absorber. The impact damper will be placed in the tuned absorber to control
the secondary system. As mentioned earlier, the concept of using these two passive
controllers to complement each other’s deficiencies has been introduced earlier in
references [8] and [9]. Therefore, the purpose here is to extend its use in secondary systems
and to provide performance charts for potential practical applications.

Implementing such an add-on enhancement in practice would be a relatively simple task.
The cavity required to accommodate the impact damper may be cut into the tuned
absorber. Alternatively, if machining needs to be avoided, a container could be attached
to the absorber to accommodate the damper. The impact damper is simply a rigid mass
to be placed in this cavity. Care may need to be taken to minimize friction, as friction
would reduce the relative approach speed before collision. If the impact damper could be
suspended in its cavity, as it is with the case described in section 4, frictional effects could
be avoided entirely.

2. NUMERICAL SIMULATIONS

The model used in numerical simulations is shown schematically in Figure 1. In this
four-degree-of-freedom (4DOF) model, the first oscillator (m1, c1, k1) represents the
primary system excited by the disturbance F(t). The smaller secondary system (m2, c2, k2)
is mounted on the primary system. Attention will be mostly focused on this secondary

Figure 1. The three-degree-of-freedom oscillator with the impact damper.
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system to restrain its response. The tuned absorber (m3, c3, k3) is the auxiliary oscillator
attached to m2. Finally, the rigid mass m4 is the impact damper. The impact damper is
placed in a cavity of m3 with a total clearance of d.

The differential equations of motion of the 3 DOF oscillator between collisions are

m1
d2x1

dt2 + (c1 + c2)
dx1

dt
+(k1 + k2)x1 − c2

dx2

dt
− k2x2 =F(t), (1)

m2
d2x2

dt2 + (c2 + c3)
dx2

dt
+(k2 + k3)x2 − c2

dx1

dt
− k2x1 − c3

dx3

dt
− k3x3 =0, (2)

m3
d2x3

dt2 + c3
dx3

dt
+ k3x3 − c3

dx2

dt
− k3x2 =0, (3)

whereas the impact damper experiences a constant velocity motion resulting in

m4
d2x4

dt2 =0. (4)

The numerical procedure consisted of using a standard fourth order Runge–Kutta finite
difference scheme to integrate all four equations of motion simultaneously until a contact
between m3 and m4 was established. A time step of smaller than 1/100 of the natural period
of the primary system was used to ensure the stability of integration. A collision was
assumed to take place when the difference between the two co-ordinates x3(t) and x4(t),
was found to be smaller than one millionth of the total clearance, d, in Figure 1. Iteration
on the time step was performed by bisection to locate the instant of contact.

The standard instantaneous collision assumption was used to implement the energy
dissipation and momentum transfer [8]. Each collision resulted in an incremental change
of velocities of the impact damper and the tuned absorber according to

dx3+

dt
=

(1− me)
(1+ m)

dx3−

dt
+

m(1+ e)
(1+ m)

dx4−

dt
(5)

and

dx4+

dt
=

(1+ e)
(1+ m)

dx3−

dt
+

(m− e)
(1+ m)

dx4−

dt
, (6)

where m is the mass ratio (m4/m3) and e is the coefficient of restitution. Equations (5) and
(6) may be obtained easily from the simultaneous solution of the conservation of linear
momentum (before and after a collision) and from the definition of the coefficient of
restitution,

e=−(dx4+/dt−dx3+/dt)/dx4−/dt−dx3−/dt, (7)

where subscripts − and + indicate the instances immediately before and after a collision.
Consistent with the instantaneous collision assumption, the displacements of m3 and m4

were left unchanged. A collision caused no change in the primary and the secondary
systems. Numerical integration always started with zero initial conditions. After every
collision, integration resumed with new initial conditions.

The random white noise excitation was approximated with [11]

F(t)=z2 s
N

k=1

[S0(vk )]1/2 cos (v'k t+fk ), (8)
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where S0(vk ) is the desired power spectral density of F(t) with N equally spaced spectral
components, vk =Dv(k−1/2), Dv=vu /N, v'k =vk + dv. dv and fk are random
variables uniformly distributed over the ranges of 20·05 Dv and 0 to 2p, respectively.
S0(vk ) was taken to be unity. The cut-off frequency of the excitation, vu , was set to be
twice as large as the natural frequency of the uncontrolled primary system with 100 spectral
components (N).

Performance of the impact damper was evaluated by comparing the root mean square
(rms) displacement of the secondary system between the cases with and without the impact
damper. Moving rms averages were calculated after every time step until steady state. A
1000 s simulation was generally found to be long enough to obtain stationary rms averages
(where the fundamental frequency of the primary system was 1 rad/s). Hence, one 1000 s
long sequence of values for F(t) was generated from equation (8) and this same sequence
was used for each case of simulation in order to maintain consistency.

Case studies were performed for mass ratios between the secondary and the primary
systems (m1/m2) ranging from 1 to 1000. Smaller ratios represented cases in which the
primary and the secondary systems are comparable in size, whereas large ratios represented
light resonant secondary structures in buildings. The natural frequency of the secondary
(k2/m2)1/2 and primary (k1/m1)1/2 systems were taken to be identical as this case represents

Figure 2. Variation of rms displacement ratios of the secondary system with clearance for e=0·3 (Q) and
e=0·8 (q) and for m1/m2 =1 and (a) z1 =0·001, (b) z1 =0·01, (c) z1 =0·05; for m1/m2 =10 and (d) z1 =0·001,
(e) z1 =0·01, (f) z1 =0·05; for m1/m2 =100 and (g) z1 =0·001, (h) z1 =0·01, (i) z1 =0·05; for m1/m2 =1000 and
(j) z1 =0·001, (k) z1 =0·01, (l) z1 =0·05.
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the strongest interaction and hence the most critical case for the secondary system [12, 13].
The critical damping ratio of the primary system, z1(c1/2zm1k1), was varied from 0 to 0·10.
The secondary system was taken to be undamped (c2 =0·0).

A mass ratio of 0·10 (m3/m2) was maintained between the secondary system and the
absorber. The absorber was tuned to the natural frequencies of the primary and the
secondary systems, (k3/m3)1/2 = (k2/m2)1/2 = (k1/m1)1/2, and assumed undamped (c3 =0·0).
The mass ratio between the absorber and the impact damper, m=m4/m3, was kept at 0·25.
Hence, although the value of m is quite large, the addition of the impact damper raised
the inertia of the secondary system only by 2·5%.

3. NUMERICAL RESULTS

In Figure 2, rms displacement ratios, sx2/sx20, of the secondary system are presented for
different non-dimensional clearances, d/sx20. Here, sx2 and sx20 represent the rms
displacement of the secondary system with and without the impact damper; and d is the
total clearance of the impact damper. Hence, a sx2/sx20 smaller than unity represents
attenuation.

Two different coefficients of restitution, e, were used for these simulations. A value of
0·3, for instance, represents contacts between hard neoprene and metal surfaces. These
results are marked with (Q) in Figure 2. A coefficient of restitution of 0·8, on the other

Figure 3. Variation of rms displacement ratios of the primary system sx1/sx10 (q), secondary system sx2/sx20

(() and the absorber sx3/sx30 (r) for e=0·3 and for m1/m2 =10 and (a) z1 =0, (b) z1 =0·001, (c) z1 =0·01, (d)
z1 =0·05 and (e) z1 =0·10.
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hand, represents contacts between polished surfaces of hardened metals, such as tool steels.
These results are marked with (q). For all cases presented in Figure 2, e=0·3 (Q)
produced more effective attenuations than those of e=0·8 (q). Hence, all further
discussions will be limited to the smaller coefficient of restitution. This trend is in
agreement with earlier findings reported for random excitations [14]. Different m1/m2 are
presented in each row in a descending order, namely 1, 10, 100 and 1000. Each column
corresponding to a critical damping ratio of the primary system, z1, of 0·001, 0·01 and 0·05,
from left to right.

Generally, all parameter combinations in Figure 2 show attenuations due to the presence
of the impact damper. These attenuations are quite marginal for cases with small d/sx20,
producing values of sx2/x20 close to unity. Small d/sx20 cause too many collisions which
mostly occur with small relative approach speeds before contact. In turn, these slow speeds
drastically inhibit the momentum exchange between the impact damper and the tuned
absorber. When d/sx20 is large, on the other hand, too few collisions occur. As a result,
attenuations were again quite insignificant. Absence of collisions due to too large a
clearance is always indicated with a sx2/sx20 of unity for each case. Between too small and
too large clearances, results for each set of parameters indicate an optimal clearance to
produce the largest attenuations. These optimal clearances produce relatively large
approach speeds with an average frequency of two collisions per cycle. The term ‘‘cycle’’
is used loosely here due to the random nature of the disturbance.

In Figure 2, for m1/m2 =1 and m1/m2 =10 (in the first two rows), as the critical damping
ratio of the primary system increases from 0·001 to 0·05 (from the first to the third column)

Figure 4. Same as Figure 3 but for m1/m2 =1000.
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effectiveness of the impact damper decreases. This trend is not surprising since any increase
in damping will result in a smaller excursion amplitude in the absorber’s oscillations. Effect
of the impact damper on the secondary system is an indirect one through the response of
the tuned absorber. Therefore, smaller excursions of the absorber give the impact damper
less of a chance to make a difference. Best attenuations are in the order of 50% for
m1/m2 =1 and 80% for m1/m2 =10. These attenuations deteriorate to approximately 25%
and 45%, respectively, in the third column of each row.

The last two rows of Figure 2, for m1/m2 =100 and m1/m2 =1000, show a different trend
than the first two rows. Particularly for m1/m2 =1000, increasing values of z1 produce more
effective attenuations from approximately 50% in the first column to 80% in the third
column. This drastic change may be attributed to the ratio of the primary and the
secondary masses. When the secondary system’s mass is 1000 times smaller than that of
the primary system, it is virtually impossible for the primary system to be affected by
changes in the response of the secondary system. Hence, excitation applied on the primary
system is in fact perceived as a moving rigid base by the secondary system. Therefore, the
‘‘apparent’’ degree of freedom of the system is now reduced by one. Increasing damping
in the primary system only enhances this effect.

Dependence of the attenuations of the impact damper on m1/m2 is demonstrated further
in Figures 3 and 4. In Figure 3, the rms displacement ratios of the primary sx1/sx10 (q),
secondary sx2/sz20 (() and the tuned absorber sx3/sx30 (r) systems are given for different
non-dimensional clearances d/sx20 but for a constant m1/m2 =10 and for e=0·3. Each
frame from 3(a–e) corresponds to a z1 of 0·0, 0·001, 0·01, 0·05 and 0·10. Hence, rms ratios
of the secondary system (() in the middle three frames are repeated from Figure 2. Because
of the relatively strong interaction between the primary and the secondary systems for this
m1/m2 =10, as the damping in the primary system increases, the relative performance of
the impact damper deteriorates from approximately 80% attenuation in frames 3(a) and
3(b) to 30% in frame 3(e). What is interesting to note in Figure 3 is that, when the impact
damper is effective, the attenuations are achieved in about the same order for all three of
the systems simultaneously. On the other hand, when the performance deteriorates,
attenuations follow the reverse order of the size of each system’s mass. Larger attenuations
occur for the tuned absorber, then for the secondary system and the primary system.

Results in Figure 4 are presented in a format identical to Figure 3, but this time for
m1/m2 =1000. As discussed briefly earlier, the effectiveness of control of the secondary
system is particularly pronounced in Figures 4(d) and 4(e), for z1 of 0·05 and 0·10,
producing approximately 80% attenuation for a d/sx20 range of 1·5–4. Best attenuations
gradually deteriorate to approximately 65%, 50% and 40% as the value of z1 changes to
0·01, 0·001 and 0·0, respectively. In Figures 4(d) and 4(e), the primary system’s response
remains unaffected for all clearances, whereas some marginal changes may be observed in
Figures 4(a) to 4(c) due to the presence of the impact damper.

One of the drawbacks of a conventional tuned absorber is the large excursion amplitudes
of the tuned absorber. Since the absorber is intentionally designed to resonate at the tuning
frequency to be effective, resulting large amplitudes require sufficiently large space around
the absorber and unavoidable maintenance/replacement of the absorber in time. Results
presented so far invariably suggest that addition of the impact damper should negate this
particular drawback.

Displacement histories of the primary, secondary and the tuned absorber are shown in
Figure 5(a) for the uncontrolled system and for m1/m2 =10 and z1 =0. In Figure 5(b), the
same system is shown with the impact damper and a non-dimensional clearance of
d/sx20 =2·17. The first 150 s period of the histories show the process of the gradual building
of the excursion amplitudes starting from zero initial conditions. The last 150 s period, on
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the other hand, exhibits an almost perfectly periodic character in response to the random
white noise excitation. This periodic character is not surprising considering that an
oscillator is expected to respond in a narrow band of frequencies regardless of the
frequency content of the excitation. However, this natural self-organization process of
deliberately picking a narrow band of preferred frequencies is a gradual one. If a randomly
excited response may be envisaged as a sequence of short transient disturbances, gradual
building of significantly large oscillation amplitudes require the presence of the preferred
frequency components as initial conditions for each of these short transient disturbances.
When this gradual building of the oscillation amplitudes is interrupted by discontinuities
of the impact damper’s collisions, the resulting response is somewhat disorganized and
certainly smaller than the uncontrolled case [15]. Response in both Figures 5(a) and 5(b)
are identical until the first contact is established at about 50 s. Differences start emerging
towards the end of the initial 150 s period, though both cases are still quite similar. This
similarity is due to the first few collisions having inevitably small approach speeds and
being quite ineffective. However, controlled displacement amplitudes for the last 150 s are
significantly smaller than those of the uncontrolled displacements. Similar comparisons
may be made between the controlled and uncontrolled displacement histories in
Figures 6(a) and 6(b), this time for m1/m2 =1000, z1 =0·10 and for d/sx20 =2·95. In Figure
6(b), controlled oscillation amplitudes of the primary system remain virtually unchanged
due to its large inertia.

Figure 7. History of (a) uncontrolled and (b) controlled FFT of the displacement of the secondary system with
d/sx20 =2·17, m1/m2 =10 and z1 =0.
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Figure 7 shows the Fast Fourier Transformation (FFT) of the displacement of the same
secondary system in Figure 5. In this figure, the vertical axis represents the spectral
amplitude, the horizontal axis represents frequency (in Hz) and the depth represents the
starting time of a FFT snapshot (approximately 150 s long each). The top half of Figure
7 is the uncontrolled response. The gradual building process discussed earlier is displayed
in this uncontrolled response, clearly emphasizing the exaggerated narrow band response
after 600 s. For the first FFT, the controlled response, shown in the bottom half, has a
very similar spectral distribution to that of the uncontrolled response. Starting from the
second FFT, the controlled response’s spectral amplitudes are significantly smaller with
a wider frequency distribution. Figure 8 shows the same FFT histories in an identical
format to that of Figure 7, but this time for the same parameters as in Figure 6.

Figure 9 shows the effect of the clearance of the impact damper on the displacement
of the secondary system for m1/m2 =10 and z1 =0. For comparison purposes, only the
last FFT snapshot (between 850 and 1000 s) of the displacement of the secondary system
is shown in Figure 9(a). Some selective non-dimensional clearances, d/sx20, are marked
along the depth axis. In Figure 9(a), the second FFT corresponds to the best clearance
case shown earlier in Figures 5(b) and 7(b). The clearance corresponding to the fifth FFT
is deliberately chosen to be too large to avoid collisions, and therefore to produce the
uncontrolled response of the same case in Figures 5(a) and 7(a). As may be noted easily
in this figure, too small a clearance (d/sx20 =0·54) produces a spectral distribution with
a smaller peak frequency but with a comparable spectral amplitude to that of the
uncontrolled case due to having too frequent collisions. Larger clearances, on the other
hand, are again ineffective due to too infrequent collisions. Example cases shown here

Figure 8. Same as Figure 7 but d/sx20 =m1/m2 =1000 and z1 =0·10.
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correspond to sx2/sx20 of approximately 0·37, 0·18, 0·32, 0·36 and 1·00. The same
information for clearance dependence is presented this time using the probability
distribution in Figure 9(b). The optimal clearance case, which is cross hatched for easy
comparison, suggests a three fold attenuation of the peak displacement as comapared to
the uncontrolled case. Other non-optimal clearances show similar attenuations in peak
displacement to those of the corresponding rms averages.

In Figure 10, information similar to Figure 9 is presented in an identical format but for
m1/m2 =1000 and z1 =0·10. In Figure 10(a), the same comments as those made for
Figure 9(a) are valid in general. The exception is that the spectral distribution of the
components are significantly narrower this time due to an apparent loss of degree of
freedom discussed earlier. This narrow band response leads to an almost perfectly periodic
response which is reflected in the shape of the probability distribution of the uncontrolled

Figure 9. Variation of (a) FFT and (b) probability distribution of the displacement of the secondary system
with clearance; m1/m2 =10 and z1 =0.
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Figure 10. Same as Figure 9 but m1/m2 =1000 and z1 =0·10.

case in Figure 10(b). This resemblance of the probability distribution to a harmonic
variation may also be noticed for the first (d/sx20 =0·295) and the fourth (d/sx20 =16·20)
clearances at varying degrees.

Another look at the attenuation mechanism of the impact damper is presented in
Figure 11. In Figure 11(a), histories of the energy input to the primary system from the
excitation are given for m1/m2 =10 and z1 =0 and d/sx20 =2·17. The energy input from
the random excitation seems to produce rather large fluctuations due to large velocity
fluctuations of the uncontrolled system. For the optimal impact damper, on the other
hand, the input energy history is much smoother as compared to the uncontrolled case.
This, of course, is due to the attenuations induced in the response of the primary system
by the impact damper. Surprisingly, the controlled cumulative energy input is larger than
that of the uncontrolled case. Dissipated energy due to impacts, however, is just as large
as the input energy, leaving only a minimal net energy.

In Figure 11(b), energy histories are presented in the same format as in Figure 11(a) but
for m1/m2 =1000, z1 =0·10 and d/sx20 =2·95. In this figure, uncontrolled, controlled and
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Figure 12. Experimental setup and instrumentation. 1. Brüel and Kjaer signal generator, Type 1024; 2. MB
electronics amplifier, Model 2250; 3. LDS exciter, Model PM 50; 4. soft spring; 5. Brüel and Kjaer accelerometer,
Type 4371; 6. Brüel and Kjaer preamplifier, Type 2625; 7. Hewlett Packard Frequency Analyzer, Type 3566A.

net-controlled energy histories seem very similar since the response of the primary system
is virtually unaffected by any change in the secondary system. Histories in Figure 11(c)
are for the same cases as in Figure 11(b), but this time the energy input to the secondary
system rather than the primary system is plotted. Hence, this case is treated as if the
primary system does not exist and the secondary system is given a base excitation. Trends
in Figure 11(c) are very similar to those in Figure 11(a). Minimal net energy is left for the
secondary system, after the energy dissipations due to collisions are subtracted from the
energy input from the primary system.

4. EXPERIMENTS

A schematic drawing of the experimental model is shown in Figure 12. The primary
structure in this model is a rigid plate cantilevered from a fixed base using thin strips of
steel which act as the resilient elements as well as contributing to the equivalent mass. The
secondary structure is another simple oscillator mounted on the primary structure using
similar steel strips. The tuned absorber, a third oscillator, is mounted on the secondary
structure. Finally, the impact damper is suspended into the cavity of the absorber by using
it as the mass of a simple pendulum. Hence, the damper’s motion is free of all external
forces between contacts. The radial clearance, d/2, between the damper and the absorber
is indicated in Figure 12. The parameters of the model are given in Table 1 for reference.

The experimental procedure consisted of exciting the primary system randomly by using
an electromagnetic exciter, item 3 in Figure 12, which is driven by a power amplifier, item
2, and a noise generator, item 1. A soft spring was used between the exciter and the primary
system to facilitate application of the random excitation. Response of the system was
measured by using accelerometers attached on the primary, secondary and the tuned
absorber systems (shown only on the secondary system, item 5, for clarity). The output
of each accelerometer was first amplified, then processed by using a FFT analyzer which
was also capable of computing the integrals of the acceleration spectra. The number of
sample averages was kept high enough so that the expected error in any spectral
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T 1

Parameters of the experimental model: keq , zeq and meq represent the equivalent stiffness,
critical viscous damping ratio and mass when each system is considered individually as a

SDOF oscillator

Resonant Freq. (Hz)† keq‡ (103 N/m) meq‡ (kg) zeq†

Primary system 25·17 2 0·35 113·63 4·544 0·0053 2 0·0002

Second. system 24·67 2 0·25 11·22 0·467 0·0026 2 0·0007

Tuned absor. 23·08 3 0·30 1·22 0·058 0·0034 2 0·0002

Impact damper — — 0·011† —
20·005

† Measured. ‡ Calculated.

component was well within 1 dB with a 90% confidence [16]. Rms amplitudes were
computed by integrating the averaged spectra.

Measurements were performed over a frequency range from 0 to 50 Hz, whereas the
fundamental frequency of the primary system was designed to be approximately 25 Hz.
Over the frequency range, the displacement of the exciter’s table showed a relatively flat
spectral distribution. Hence, the excitation was assumed to be a good representation of
white noise. The procedure described above was repeated with and without the presence
of the impact damper. The clearance of the impact damper, d, was kept constant at
0·1902 0·010 mm throughout the experiments. The clearance was measured with a
precision feeler gage. The coefficient of restitution between the damper and the neoprene
lined (approximately 1 mm thick) walls of the tuned absorber was measured to be
0·342 0·05 [9].

Figure 13. Comparison of the numerically predicted and measured rms displacement ratios of the (a) primary
(b) secondary and (c) tuned absorber systems.
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5. EXPERIMENTAL RESULTS

Both numerically predicted and experimentally observed rms displacements of the
primary, secondary and tuned absorber systems are shown in Figures 13(a), 13(b) and
13(c). The vertical axis of each frame represents the corresponding non-dimensional
displacement ratio, whereas the horizontal axes indicate the clearance non-dimensionalised
with the rms displacement of the secondary system.

Two sets of numerical predictions are presented in this figure, considering the variation
of the experimentally measured coefficient of restitution. Results for e=0·3 are shown
with (w), whereas (q) represents results for e=0·4. Experimentally measured ratios are
marked with (r). Changing the coefficient of restitution between 0·3 and 0·4, produces
quite insignificant differences. Generally, overall agreement between the numerical
predictions and measurements is quite close for all three co-ordinates, particularly when
the attenuations of the impact damper are most effective. This close agreement slowly
deteriorates as the value of the non-dimensional clearance d/sx20 increases to values greater
than 13. Here, it must be kept in mind that an experimental value of the non-dimensional
clearance d/sx20 is varied by keeping the clearance constant and changing the level of
excitation (whereas changing the clearance is a more practical approach in numerical
simulations). Hence, a large d/sx20 is only possible by lowering the level of excitation. At
these low levels, it was found to be practically impossible to avoid the effects of small
amplitude building vibrations. These structural vibrations were confounded with the
practical impossibility of centering the impact damper perfectly in its cavity. Hence, at low
excitation levels, more frequent collisions were observed in the experiments when
compared to those predicted in numerical simulations. For small d/sx20, experimental
imperfections were largely overwhelmed by high excitation levels.

6. CONCLUSIONS

Performance of a tuned absorber with an impact damper is investigated, in this study,
for controlling excessive random oscillations of a light secondary system. A simple
numerical procedure is presented for predicting performance under random white noise
disturbance. Addition of an impact damper to a tuned absorber is a relatively simple
proposition. However, this simple addition seems to provide significant improvement.

When the mass of the secondary system to be controlled is ten times smaller than the
mass of the primary system, m1/m2 =10, the impact damper is most effective when there
is minimal damping in the system. Attenuations in the order of 80% are possible in the
response of the secondary as well as in the primary and the tuned absorber systems. This
indirect benefit of controlling the primary system through the controlled response of the
secondary system, may prove particularly useful for practical applications.

When the mass of the secondary system to be controlled is thousand times smaller than
the mass of the primary systems, m1/m2 =1000, the impact damper is most effective when
the primary system has at least 5% critical damping. For this case, 80% attenuation is
possible for both the secondary and the tuned absorber systems. No control is attainable
for the primary system due to its large inertia.

Simple experiments were performed to validate the numerical predictions. Reasonable
agreement was observed between the measured and predicted results with the exception
of low levels of excitation. At these low levels, the experimental model performed better
than the numerical model.

Although it is not presented here, one additional benefit of employing an impact damper
indirectly, is to avoid the discontinuities due to collisions. When an impact damper is
placed in an oscillator directly, excursions of the oscillator may be attenuated while its
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accelerations are exaggerated. This exaggeration is due to the presence of collisions. When
these collisions take place in the absorber, their effect is cushioned through the dynamic
response of the absorber, before reaching the secondary system to be protected. Earlier
work reported comparable attenuation of accelerations to that of the displacements [9].
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